
5/5/2021 What's the Difference Between OpenAPI 2.0, 3.0, and 3.1? | Stoplight API Intersection

https://stoplight.io/blog/difference-between-open-v2-v3-v31/ 1/14

The OpenAPI Specification �OAS� is a widely adopted, standardized

format for describing REST APIs. You can use OpenAPI to detail

every part of your API, including endpoints, operation parameters,

request responses, and authentication flows. The OpenAPI format

is easy for both developers and machines to read and understand.

What’s harder to immediately decipher is how the versions differ.

At the time of publication, almost everyone will likely want to use

OpenAPI v3.0, the latest official major version that was released in

2017.

CONTENTS

Differences Between OpenAPI

2.0 and 3.0

I� Specification Restructured

to Increase Reusability

II� Extended JSON Schema

Support

What's the Difference BetweenWhat's the Difference Between
OpenAPI 2.0, 3.0, and 3.1?OpenAPI 2.0, 3.0, and 3.1?
There are currently two major OpenAPI releases, 2.0 and 3.0. Version 3.1There are currently two major OpenAPI releases, 2.0 and 3.0. Version 3.1

was announced on June 18, 2020 as an initial release candidate. In thiswas announced on June 18, 2020 as an initial release candidate. In this

post, we’ll look at some of the key differences between OpenAPI 2.0, 3.0,post, we’ll look at some of the key differences between OpenAPI 2.0, 3.0,

and 3.1.and 3.1.

Janet WagnerJanet Wagner
Sep 29, 2020Sep 29, 2020

https://stoplight.io/openapi/
https://stoplight.io/blog/author/janet-wagner/
https://stoplight.io/

5/5/2021 What's the Difference Between OpenAPI 2.0, 3.0, and 3.1? | Stoplight API Intersection

https://stoplight.io/blog/difference-between-open-v2-v3-v31/ 2/14

Some folks are on OpenAPI 2.0 due to being stuck there with

tooling that still has not added support for OpenAPI v3.0. Some

people might talk about OpenAPI v3.1, but whilst it is still in the

“Release Candidate” stage there is essentially no tooling support

for it.

However, for those digging into the nuances between versions, it’s

worth looking into the details.

There are currently two major OpenAPI releases, 2.0 and 3.0 (the

latest release is 3.0.3�. Version 3.1 was announced on June 18,

2020, as an initial release candidate. While it takes some important

steps forward, it adds to the confusion over which version to use.

In this post, we’ll look at some of the key differences between

OpenAPI 2.0, 3.0, and 3.1.

The two major versions of OpenAPI have the most significant

differences, which come from their history. OpenAPI 2.0 was

previously known as Swagger and is intended to replace it with

backward compatibility. Once adopted as an open format, the

community began working on OpenAPI 3.0, released in 2017. Let’s

III� Examples Overhauled for

Easy Reusability

IV� Changes to Security Flows

V� Improved Parameter

Descriptions

VI� Content Type Negotiation

Support Added

VII� Support to Describe

Callbacks

VIII� New OpenAPI Links

Feature

Differences Between OpenAPI

3.0 and 3.1

I� Full JSON Schema Support

II� Semantic Versioning

Dropped

III� Paths Are Now Optional

IV� Single “Example” Keyword

Has Been Deprecated

V� Type Can Now Be An Array

VI� Nullable is No More

One Platform to Explore

OpenAPI

Differences Between OpenAPI 2.0
and 3.0

https://www.openapis.org/blog/2020/06/18/openapi-3-1-0-rc0-its-here
https://stoplight.io/api-design-checklist-download

5/5/2021 What's the Difference Between OpenAPI 2.0, 3.0, and 3.1? | Stoplight API Intersection

https://stoplight.io/blog/difference-between-open-v2-v3-v31/ 3/14

highlight some of the significant changes made to OpenAPI

components in version 3.0.

OpenAPI 3.0 introduces a reorganized document structure so that

it’s easier to write and reuse API definitions. This simplified

document structure moves securityDefinitions, definitions,

parameters, and responses to components .

Version 3.0 includes the new Components Object, which contains

reusable objects, such as examples, parameters, responses,

request bodies, links, security schemes, and schemas. The

Components Object also contains headers and callbacks. In

version 2.0, you could describe headers but couldn’t reuse them as

easily as in version 3.0. Support for describing callbacks is a new

feature in version 3.0, which we cover later in this section.

Specification Restructured to Increase Reusability

5/5/2021 What's the Difference Between OpenAPI 2.0, 3.0, and 3.1? | Stoplight API Intersection

https://stoplight.io/blog/difference-between-open-v2-v3-v31/ 4/14

The 3.0 release includes extended support for JSON Schema,

which means you can use more JSON Schema keywords than with

version 2.0. Some keywords supported in version 3.0 are handled

slightly differently than in JSON Schema, including:

 oneOf

 anyOf

 allOf

OpenAPI 2.0 does not support the oneOf or anyOf keywords, but

you can use these keywords with version 3.0. For example, you

might want to use oneOf or anyOf to describe an API request or

response with a few alternative schemas (built on the concept of

polymorphism).

Examples are a handy OpenAPI feature you can use for a wide

range of purposes. For instance, you could create a mock API

server tool that uses examples to generate mock requests. In

version 3.0, examples have been completely overhauled so that you

can easily reuse them.

In previous versions, you could only describe examples using a

JSON or YAML object. With version 3.0, you can describe multiple

 examples of any format using a JSON string. Also, examples can be

placed within objects, properties, parameter descriptions, request

Extended JSON Schema Support

Examples Overhauled for Easy Reusability

https://medium.com/ringcentral-developers/rest-api-best-practices-for-interoperability-ce2c76d99312
https://stoplight.io/mocking/

5/5/2021 What's the Difference Between OpenAPI 2.0, 3.0, and 3.1? | Stoplight API Intersection

https://stoplight.io/blog/difference-between-open-v2-v3-v31/ 5/14

bodies, and response descriptions. You can also now reference

external examples.

OpenAPI 3.0 supports more security schemes and bearer formats

than version 2.0. Plus, the way you describe security flows has

changed. Version 3.0 includes a new http type, which covers all

HTTP security schemes. Additionally, the basic type has been

renamed to http .

Support for OpenID Connect Discovery was added to the

specification in the 3.0 release, and the type is openIdConnect.

To better match the OAuth 2.0 specification, OAuth 2.0 flows in

OpenAPI 3.0 have been renamed and restructured slightly. For

example, “application” has been renamed as “clientCredentials,”

and “accessCode” has been renamed as “authorizationCode.”

Version 3.0 includes improvements to parameter descriptions. The

 body and formData parameter types have been removed and

replaced with requestBody . The specification supports arrays and

objects in operation parameters, and you can specify the method

of serialization. Operation parameters include path, query, header,

and cookie.

A new cookie parameter type was added in version 3.0 so that you

could describe APIs that use cookies. Cookie authentication is not

supported in version 2.0, so you have to find workarounds for the

Changes to Security Flows

Improved Parameter Descriptions

5/5/2021 What's the Difference Between OpenAPI 2.0, 3.0, and 3.1? | Stoplight API Intersection

https://stoplight.io/blog/difference-between-open-v2-v3-v31/ 6/14

limitation, usually through request header objects. With OpenAPI

3.0, you can send API keys via cookie, although this is not a best

practice. You have better options for transmitting API keys, such as

authentication with API tokens and OAuth.

The 3.0 release features a requestBody that supports content

negotiation so that you can define different schemas and examples

for various media types. The requestBody allows web services to

accept and return data in different formats, such as images, plain

text, XML, and JSON. It also allows you to provide one or multiple

examples.

In OpenAPI 2.0, mimetypes supported by the API are defined in the

“consumes” and “produces” sections. Consumes and produces

have been eliminated in version 3.0. They’ve been replaced by a

content object that maps the supported media types to their

schemas. In OpenAPI 3.0, you can use wildcards for media types.

For example, you could apply a wildcard that represents all image

types: image/*

Callbacks allow you to describe asynchronous APIs where

communication happens in real-time. An example of callbacks in

Content Type Negotiation Support Added

Support to Describe Callbacks

https://stoplight.io/api-design-checklist-download
https://stoplight.io/blog/mocking-callbacks-openapi-prism/

5/5/2021 What's the Difference Between OpenAPI 2.0, 3.0, and 3.1? | Stoplight API Intersection

https://stoplight.io/blog/difference-between-open-v2-v3-v31/ 7/14

real-life would be shipment alerts—when you’ve subscribed to

receive alerts about a package shipped by a logistics company.

You get notifications in real-time from the logistics API informing

you “the package is in transit” or “the package has been delivered.”

callbacks:

 notification:

 '{$request.body#/url}?token={$request.body#/token}':

 post:

 summary: 'Receive single notification about a parcel'

 requestBody:

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/notification'

 responses:

 200:

 description: 'Notification successfully processed'

 content:

 text/plain:

 examples:

 ok:

 value: 'ok'

OpenAPI 2.0 doesn’t provide a way to describe callbacks, but in

version 3.0, a new callback object was added that allows you to

define asynchronous APIs and webhooks. You can define the

format of the API operation as well as the callback messages and

their expected responses. With OpenAPI 3.0, you can describe

callback messages like in our logistics API example above.

New OpenAPI Links Feature

https://stoplight.io/blog/mocking-callbacks-openapi-prism/

5/5/2021 What's the Difference Between OpenAPI 2.0, 3.0, and 3.1? | Stoplight API Intersection

https://stoplight.io/blog/difference-between-open-v2-v3-v31/ 8/14

Links are another new feature in version 3.0. With Links, you can

describe the relationships between API responses and operations,

and then provide a traversal mechanism between them. Links allow

you to define what will happen next with each API endpoint. The

concept of Links is similar to hypermedia APIs �HATEOAS�.

However, this feature was not explicitly created for describing

hypermedia APIs.

One way you could use Links would be to describe API endpoints

that retrieve product details for different productIDs . For each

 productID , you would use Links to describe how to expand the

information, and clients could follow each link automatically. You

could also use Links for pagination. For example, if you are

designing an API that will retrieve an extensive list of products, you

would want a way to paginate the list automatically. You could use

Links to explain how to navigate the page results, e.g. 50�99, 100�

149.

Moving from the legacy Swagger description format of OpenAPI

2.0 to 3.0 obviously brought sweeping changes. While OpenAPI 3.1

is considered a minor release, there are some significant

differences between version 3.1 and 3.0, especially related to JSON

Schema in OpenAPI.

Differences Between OpenAPI 3.0
and 3.1

https://stoplight.io/blog/openapi-json-schema/

5/5/2021 What's the Difference Between OpenAPI 2.0, 3.0, and 3.1? | Stoplight API Intersection

https://stoplight.io/blog/difference-between-open-v2-v3-v31/ 9/14

The changes were big enough that the community debated

whether to refer to this release candidate as OpenAPI 4.0. In this

section, we’ll highlight some of the differences in what will become

OpenAPI 3.1.

Version 3.1 is 100% compatible with the latest draft of JSON

Schema, version 2019�09. OpenAPI 3.1 supports ALL JSON

Schema Keywords, so if the keyword exists in the JSON Schema

vocabulary, then you can use it with OpenAPI 3.1. The move to full

JSON Schema support has created some minor breaking changes.

Semantic versioning (semver) was introduced in OpenAPI 3.0. The

goal of semver is to communicate when API updates include

breaking changes and when updates are backward compatible.

Because of the minor breaking changes in version 3.1, there was

some debate among the members of the OpenAPI Technical

Steering Committee �TSC� about the continued use of semver.

Continuing to use semver would require that the next OpenAPI

release number be 4.0.0 instead of 3.1. So, in the end, the TSC

decided to drop semver.

 Paths are resources that an API exposes. They include relative

endpoints, operations, and responses. In 3.1, paths became

optional to allow API descriptions that only include webhooks. The

Full JSON Schema Support

Semantic Versioning Dropped

Paths Are Now Optional

https://json-schema.org/specification.html
https://github.com/OAI/OpenAPI-Specification/releases/tag/3.1.0-rc0

5/5/2021 What's the Difference Between OpenAPI 2.0, 3.0, and 3.1? | Stoplight API Intersection

https://stoplight.io/blog/difference-between-open-v2-v3-v31/ 10/14

change allows for flexibility, which fits OpenAPI’s goal to define any

REST API. This feature builds on the callback support of OpenAPI

3.0, which helped describe event-driven APIs. Most OpenAPI files

will still have paths, but now they won’t be required.

OpenAPI 3.0 includes a single Schema Object example keyword:

type: string

example: squirtle

The single example keyword has been deprecated in OpenAPI 3.1.

This change resolves a discrepancy between OpenAPI and JSON

Schema. JSON Schema includes an examples keyword which is an

array, so you can list examples as a string:

type: string

examples:

- squirtle

- charmander

OpenAPI 3.0 does allow you to add an “example” to an array. But

arrays and items with arrays don’t support multiple examples ; they

only support the single example keyword.

In previous versions of OpenAPI, type could only be a single

string. But in JSON Schema, type can be an array of strings.

Single “Example” Keyword Has Been Deprecated

Type Can Now Be An Array

https://apisyouwonthate.com/blog/openapi-v31-and-json-schema-2019-09

5/5/2021 What's the Difference Between OpenAPI 2.0, 3.0, and 3.1? | Stoplight API Intersection

https://stoplight.io/blog/difference-between-open-v2-v3-v31/ 11/14

There is no workaround for this in version 2.0, but in version 3.0,

you can select multiple types using oneOf :

oneOf:

 - type: string

 - type: integer

With OpenAPI 3.1, the specification now supports type as an array:

type: [string, integer]

Neither OpenAPI 2.0 nor 3.0 support null as a type, but JSON

Schema does support type null . OpenAPI 3.0 includes the field

name nullable , which you can set to true if you want the value to

be null :

type: string

nullable: true

However, support for type null has been added in version 3.1, and

 nullable has been removed.

type: [string, "null"]

Nullable is No More

https://stoplight.io/api-design-checklist-download

5/5/2021 What's the Difference Between OpenAPI 2.0, 3.0, and 3.1? | Stoplight API Intersection

https://stoplight.io/blog/difference-between-open-v2-v3-v31/ 12/14

Read how world’s leading API first companies are solving API Design Management at
Scale.

Your work email...

Get the API Design Guide

We’ve only scratched the surface of the differences between

OpenAPI versions 2.0, 3.0, and 3.1. You can use Stoplight to build

quality APIs faster, without remembering the OpenAPI format

details. Get started with our API design tools, then connect your

Git repositories to gain visibility into all the elements of your API

program.

One Platform to Explore OpenAPI

https://stoplight.io/api-design/
https://stoplight.io/

