
7/30/2018 What Developers Should Know About ORTC Versus WebRTC

https://www.programmableweb.com/news/what-developers-should-know-about-ortc-versus-webrtc/analysis/2015/10/12 1/6

What Developers Should Know About
ORTC Versus WebRTC

ProgrammableWeb published an article recently about the availability of
Microsoft Edge with ORTC API support which is part of the latest Windows
Insider Preview release. Developers will now be able to build advanced
communication applications on top of the Microsoft Edge browser via the
ORTC API. Microsoft Edge is the only browser at the time of this writing that
features ORTC API support. Chrome, Firefox, Opera, and Android support
WebRTC 1.0 and the RTCPeerConnection API.

This article covers some of the differences between the ORTC API and the
WebRTC 1.0 API, which is actually a set of interrelated APIs that includes
the RTCPeerConnection API. This article also covers what ORTC API
support in Microsoft Edge and other browsers may mean for application
developers. Before covering the differences between the ORTC API and
WebRTC 1.0 API, it is helpful to understand how ORTC came to be.

In early 2013, Robin Raymond, Hookflash CTO, and Erik Lagerway,
Hookflash COO and co-founder, expressed some concerns regarding the
use of session description protocol (SDP) in WebRTC/RTCWEB. Raymond
published an in-depth blog post where he summarized his issues regarding
SDP. Below are a few of Raymond's points taken from his blog post (Read
the complete post).

Unneeded – "much too high level an API." - The API should be
lower level and wrappers can be created allowing simple access for

https://www.programmableweb.com/news/microsoft-edge-ortc-api-support-provides-advanced-communication-capabilities-apps/2015/10/12
http://blog.webrtc.is/2013/03/06/sdp-the-webrtc-boat-anchor/


7/30/2018 What Developers Should Know About ORTC Versus WebRTC

https://www.programmableweb.com/news/what-developers-should-know-about-ortc-versus-webrtc/analysis/2015/10/12 2/6

developers who would want higher level access.
Arcane Format – "legacy and problematic." - "The SDP format itself
is arcane and rooted in old world legacy reasoning."
Offer/Answer - "There’s no SDP offer/answer needed."- He says
that managing streams with a solid API does not introduce a security
threat and that "you are forcing all protocols in the future into an
offer/answer model."
Incompatibilities – Raymond wrote that "I dread the support nightmare
with Open Peer when people bridge into SIP and we then receive no
end of complaints about various incompatibilities between an Open
Peer device talking to a SIP device; all because of junk crammed into
SDP from these devices which isn’t mutually supported."
Lack of API Contact – Raymond says that "with an API, it’s a contact.
You don’t change the contact arbitrarily because it has implications. An
API can be extended, but with the current API you know exactly what
you get thus you can predict behavior. SDP is not such. It can be
changed arbitrarily and there’s no guarantee the two will match."
Doesn’t Truly Solve Goal of Compatibility to Legacy Systems –
Raymond says that SDP is actually a hindrance to compatibility and
that SDP is not required for compatibility. Raymond also says that "I
think the SIP vendors think if the browsers use SDP they will gain lots
more compatibility. They won’t. They are better off writing a JS library
that talks the SDP they understand if they want SDP, rather than trying
to mix/match browser SDP into the mix."

Shortly after publishing the blog post in March 2013, Raymond and
Lagerway, with the help of a few others, submitted their first WebRTC
Object API proposal to the Internet Engineering Task Force (IETF). In July
2013, the W3C ORCA Community Group was formed and in December
2013, the ORTC.org website was launched.

https://www.ietf.org/
http://ortc.org/


7/30/2018 What Developers Should Know About ORTC Versus WebRTC

https://www.programmableweb.com/news/what-developers-should-know-about-ortc-versus-webrtc/analysis/2015/10/12 3/6

Today, Object RTC (ORTC) is a W3C community group supported by
Google, Hookflash, Microsoft, and other leading technology companies.
ORTC is not an official W3C specification at this time; it is an open project
that aims to establish a standard for real-time communications (RTC).
ORTC enables mobile endpoints to communicate with servers and web
browsers using RTC capabilities provided by native JavaScript APIs and
HTML5.

ORTC is often referred to as WebRTC 1.1 and is considered by many to be
an evolution of WebRTC 1.0; it is not a replacement for WebRTC 1.0. In
fact, several ORTC concepts have already been woven into the WebRTC
1.0 specification such as RtpSender and RtpReceiver. Google is also
working on moving elements of the ORTC API into Chrome source code.

The key difference between the ORTC API and the WebRTC 1.0 API is that
the ORTC API is a lower-level JavaScript API that provides the same
components as the WebRTC 1.0 API while allowing greater flexibility than
what is currently available in the WebRTC 1.0 SDP interface. Developers
can use the ORTC API to implement advanced capabilities such as layered
video coding, simulcast, scalable video coding (SVC), and more. These
capabilities can also be implemented using SDP in WebRTC 1.0. However,
WebRTC 1.0 communication capabilities can be more difficult for
developers to implement. A JavaScript API like the ORTC API, provides
greater access to more controls. In WebRTC 1.0, modifying the same
controls would require browser source code changes. ORTC is also taking
the approach of JavaScript shim libraries; for example, ORTC allows a
JavaScript-based shim ("upshim") to be built on top of ORTC.js which would
provide the same functionality of WebRTC 1.0 APIs, including the
RTCPeerConnection API. It should also be noted that ORTC APIs do not
replace WebRTC 1.0 APIs, but rather augment the existing SDP APIs in



7/30/2018 What Developers Should Know About ORTC Versus WebRTC

https://www.programmableweb.com/news/what-developers-should-know-about-ortc-versus-webrtc/analysis/2015/10/12 4/6

WebRTC 1.0 which have been integrated into millions upon millions of
devices.

Doug Mahugh, lead technical evangelist at Microsoft Open Technologies,
Inc., published a blog post late last year in which he said:

"ORTC leverages JavaScript to enable plugin-free real-time
communications among web browsers, mobile devices and cloud
technologies in a way that is familiar to website developers. The
ORTC API is well suited to a "mobile first, cloud first" world
because it supports advanced video features such as scalable
video coding and simulcast. These advanced video technologies
have proven difficult to support in an interoperable way within SDP
in WebRTC 1.0. By contrast, utilizing these advanced video
technologies within a JavaScript object API is more
straightforward."

According to Justin Uberti, principal software engineer, WebRTC Project at
Google, the next generation of WebRTC/ORTC is tentatively named
"WebRTC NV" and will be a full convergence of ORTC and WebRTC 1.0.
Applications will be able to program to WebRTC 1.0 (high-level) or object
APIs. Developers will also have the option of bypassing SDP completely.

Choosing whether to implement ORTC and/or WebRTC 1.0 is not the only
issue for developers of communication applications at this time. Developers
of video communication applications must also carefully choose which video
codec to support; the leading browsers currently support several different
video codecs.

At the time of this writing, H.264 and VP8 are among the most commonly
used video coding formats. Microsoft Edge currently supports H.264UC

https://msopentech.com/blog/2014/08/19/microsoft-google-hookflash-others-co-author-real-time-communications-specification/
https://youtu.be/HCE3S1E5UwY
https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats


7/30/2018 What Developers Should Know About ORTC Versus WebRTC

https://www.programmableweb.com/news/what-developers-should-know-about-ortc-versus-webrtc/analysis/2015/10/12 5/6

(Microsoft’s proprietary video codec) which is used by Skype services for
enabling scalable video coding, forward error correction, and simulcast
capabilities. Microsoft plans on adding H.264 support in the near future
which will enable video interoperability between Skype and the FireFox
browser (FireFox partially supports H.264) as well as the Chrome browser
("when H.264 support is added to its WebRTC implementation"). It appears
that Microsoft Edge will not include support for VP8, a video codec currently
supported by Chrome, FireFox, and Opera. However, Microsoft does plan
on adding VP9 support to Microsoft Edge in the near future. Chrome,
FireFox, and Opera already support VP9. Apple Safari currently supports
H.264 and VP8 (must be installed separately).

Going forward, leveraging both the ORTC API and WebRTC 1.0 API may
not be all that problematic for developers of communication applications.
There are many communication service providers such as Sinch, Skype,
and Twilio that will be providing SDKs that allow developers to easily build
applications that support both. ORTC is backwards compatible with
WebRTC 1.0 so it is not necessary to rewrite existing communication
applications. It is also highly likely that the major browsers will eventually
support ORTC, with the possible exception of Apple. It appears that the
Apple Safari browser supports neither ORTC nor WebRTC and it is unclear
as to what Apple plans on doing, if anything, when it comes to ORTC and/or
WebRTC.

The more problematic issue for developers of communication applications
appears to be with video codec support. With the major browsers choosing
to support different video codecs, browser compatibility and interoperability
for video communication applications may become a rather difficult
proposition for developers. The IETF recently decided that both VP8 and
H.264 are to be mandatory in WebRTC. However, most of the major
browser vendors already support newer video formats like VP9 and a few



7/30/2018 What Developers Should Know About ORTC Versus WebRTC

https://www.programmableweb.com/news/what-developers-should-know-about-ortc-versus-webrtc/analysis/2015/10/12 6/6

are working on adding H.265 support. The IETF mandate means that
WebRTC web browsers must implement both VP8 and H.264 codecs.
Developers that would like to build WebRTC compliant applications will also
have to implement both VP8 and H.264 codecs.

Developers of communication applications should pay close attention to
future web browser releases to determine when they can add new
communication capabilities via ORTC APIs and support for new video
formats to their applications. Communication application developers should
also pay close attention to the work being done by the ORTC and WebRTC
project groups. The work of these groups will most likely have a direct and
profound impact on the future development of web browsers and
communication applications.


