
7/30/2018 Key Things to Consider — Runscope Blog

https://blog.runscope.com/posts/ensuring-microservices-success-key-things-to-consider 1/6

Key Things to Consider — Runscope
Blog

This is the first post in our Featured Guest Series! Janet Wagner shares
eight tips on how your company can ensure success when moving to a
microservices architecture.

If you're interested in being a part of our next series, fill out this short form
and we'll get in touch with you for our next run.

Microservices are all the rage these days, and you can find blog posts on
most technology news sites and blogs about the topic. Major technology
companies like Amazon and Netflix have been evangelizing microservices
for quite some time now. The number of businesses building microservices
architectures to power web and mobile applications is growing at a rapid
pace and with good reason. There are significant benefits for companies
running applications on microservices architectures such as high
availability, high scalability of both the architecture itself and the engineering
teams developing it, and ability to innovate and add new features faster. 

If you are one of the many companies that have decided to venture into the
world of microservices, there are a lot of things to consider. Do you start
with a monolith or microservices architecture? How do you define the scope
of each microservice?

Here are eight key aspects that you should consider to ensure you're
prepared for building, deploying, and maintaining a microservices

http://www.webcodepro.net/
https://goo.gl/forms/IcDV5AoIYGYz2a973
http://techblog.netflix.com/2016/12/netflix-conductor-microservices.html
https://blog.runscope.com/posts/this-fortnight-in-apis-release-iii


7/30/2018 Key Things to Consider — Runscope Blog

https://blog.runscope.com/posts/ensuring-microservices-success-key-things-to-consider 2/6

architecture.

1. Monolith or Microservices First

There is some debate as to whether it’s best to start with a monolithic
architecture first then move to microservices later or just start with a
microservices architecture first. Martin Fowler, a software developer and
microservices expert, makes a compelling case that it is best to start with a
monolith and move to microservices later if warranted. 

Stefan Tilkov, co-founder and principal consultant at innoQ, is convinced
that starting out with a monolith is usually the wrong thing to do. He argues
that breaking up a monolith into separate individual services later on is
tough because its components will have eventually become tightly coupled
to each other.

Carefully consider the type of architecture that will work best for your
applications. The best approach could be monolith first, microservices first,
or another type of architecture altogether. If you're considering refactoring a
monolith into microservices, there are many aspects to consider beyond the
eight highlighted here. NGINX has a nice series of blog posts covering
microservices which includes a post about refactoring a monolith. 

2. Infrastructure and Operations Investment

Major tech companies like Amazon and Netflix can afford to make
significant investments in the infrastructure and operations needed to build,
deploy, and maintain microservices. If your company is unable or unwilling
to significantly invest in infrastructure and operations, then it is not a good
idea to invest in microservices.

https://martinfowler.com/articles/dont-start-monolith.html
https://martinfowler.com/articles/dont-start-monolith.html
https://www.nginx.com/blog/refactoring-a-monolith-into-microservices/


7/30/2018 Key Things to Consider — Runscope Blog

https://blog.runscope.com/posts/ensuring-microservices-success-key-things-to-consider 3/6

3. Peer Code Reviews

One of the challenging aspects of building a microservices architecture is
that it often requires many autonomous engineering teams, with each team
working on building and deploying one or more services to production. The
chances of coding errors occurring are far lower for a company with only a
few autonomous engineering teams and microservices than a company with
hundreds of microservices and dozens of engineers. Companies should
consider conducting peer code reviews regularly which can help reduce the
number of coding errors ensuring the success of their microservices
architecture. 

4. Open Source Software or Build from Scratch

There are quite a few open source software projects that provide tools for
building microservices architectures. Netflix provides a number of open
source software projects that companies can use to build their own
microservices architectures. Netflix isn't the only company doing that; other
companies include Capgemini, Mashape, Pivotal, and Red Hat.

Companies can use these tools so that they don’t have to build
microservices architectures from scratch; however, it may be necessary to
build some components of a microservices architecture from scratch to
meet specific application requirements.

5. Service Size

Some companies set a limit on how large each service should be e.g. no
more than 100 lines of code. The size of the service doesn’t matter;
however, what does matter is that each service does one task, and does

https://www.programmableweb.com/news/how-netflix-oss-helps-companies-build-microservices-architectures/analysis/2016/12/16
http://netflix.github.io/


7/30/2018 Key Things to Consider — Runscope Blog

https://blog.runscope.com/posts/ensuring-microservices-success-key-things-to-consider 4/6

that task well. If a service ends up doing more than one task, then the
company should consider breaking the service into separate microservices
that perform one task each. Each service should also typically only have
one datastore. Runscope co-founder and CEO John Sheehan discusses
service size, datastores, and other aspects of microservices on his APIDays
talk about "Scale-oriented Architecture with APIs". 

6. Continuous Delivery

Continuous delivery is essential when it comes to ensuring microservices
success. Continuous delivery is an approach to software development
where teams release small sets of changes frequently. It requires a DevOps
culture, and that much of the delivery process be automated. Releasing
small sets of changes frequently reduces the chances that errors will occur
and makes it easier to fix errors when they do. 

In an article about microservices tradeoffs on his website, Fowler explains:

“Being able to swiftly deploy small independent units is a great
boon for development, but it puts additional strain on operations as
half-a-dozen applications now turn into hundreds of little
microservices. Many organizations will find the difficulty of handling
such a swarm of rapidly changing tools to be prohibitive.”

Fowler goes on to say “This reinforces the important role of continuous
delivery. While continuous delivery is a valuable skill for monoliths, one
that's almost always worth the effort to get, it becomes essential for a
serious microservices setup.”

7. Service Discovery

https://www.infoq.com/presentations/queues-proxy-microservices-automation
https://martinfowler.com/articles/microservice-trade-offs.html


7/30/2018 Key Things to Consider — Runscope Blog

https://blog.runscope.com/posts/ensuring-microservices-success-key-things-to-consider 5/6

Service discovery is an important component when it comes to a
microservices architecture. Microservices instances are constantly coming
and going making it difficult, if not impossible, for engineers to know where
microservices are at any given time. Engineers must be able to find and
manage the microservices running your applications. A service discovery
system allows services to be detected automatically and help them find
each other. With a service discovery system in place, engineers don’t have
to know where every service is located.

8. Monitoring and Visualization

Applications powered by a microservices architecture are heterogeneous
and distributed by nature, making them difficult to monitor, visualize, and
analyze. Traditional application monitoring and performance management
(APM) solutions are not designed to handle complex distributed
applications.

However, today there are APM solutions designed specifically for
monitoring, visualizing, and managing complex distributed applications.
Engineers working on the development and deployment of microservices
need modern APM solutions that will help them identify the root cause of
service errors and failures, determine and reduce service dependency
bottlenecks, and figure out why an application isn’t working the way it’s
supposed to.

Choosing an effective tool to monitor, visualize, and analyze your
microservices architecture is crucial. Continuous, real-time monitoring and
analysis of your microservices is an essential component of microservices
success.

https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.programmableweb.com/news/tools-to-monitor-and-visualize-microservices-architecture/analysis/2016/12/14


7/30/2018 Key Things to Consider — Runscope Blog

https://blog.runscope.com/posts/ensuring-microservices-success-key-things-to-consider 6/6

Choose Your Application Architecture
Carefully

These are just some of the things companies should consider before
making the leap to microservices. If your company decides to make that
leap, these key considerations could make the difference between ensuring
microservices success or abject failure. Choose your application
architecture carefully as it’s not easy to move from one type of architecture
to another.


