
7/30/2018 Building an Application: Strategies for Microservices | Swagger

https://swagger.io/resources/articles/building-an-application-with-microservices/ 1/6

Building an Application: Strategies for
Microservices | Swagger

By Janet Wagner

Microservices as an approach to building reliable applications at scale has
been gaining popularity in recent years. And major companies like Amazon,
Microsoft, and Netflix have been talking about microservices for quite some
time now. This post looks at strategies for microservices, specifically
starting with a monolith and moving to microservices later and starting with
microservices right out of the gate.

What is a Monolith?



7/30/2018 Building an Application: Strategies for Microservices | Swagger

https://swagger.io/resources/articles/building-an-application-with-microservices/ 2/6

When developers talk about a monolithic application, they typically mean an
application that is treated as a single unit, is tightly coupled, and usually
requires a one-time deployment to a single server. A monolithic application
is also scaled as a single unit, likely shares one database (usually
relational), and often has one huge code base for the entire app. Everything
is defined in the code base, e.g. front-end and server-side logic, etc. and
usually only a small set of languages are used to build the app. In some
cases, a monolithic application could be deployed to a number of servers,
but the app would still be treated as one unit.

What are Microservices?

Microservices have created a lot of buzz among app developers, but there
isn’t an industry agreed-upon definition as to what microservices are.
Microservices are more of a concept for developing distributed apps.
However, there is a consensus among many industry leaders as to the
characteristics of microservices. Among these characteristics are that the
services are loosely coupled but bounded by contexts, can be deployed and
scaled independently of each other, and communicate with lightweight
mechanisms (e.g. HTTP, REST APIs, WebSockets). A short definition is
provided in the book "Building Microservices" by Sam Newman:
“Microservices are small, autonomous services that work together.”

Building Your App – Monolith or Microservices
First?

When it comes to strategies for microservices and APIs, it largely depends
on whether you decide to go with a monolithic application first and then later
move to microservices or start with microservices right out of the gate.

https://www.oreilly.com/ideas/a-quick-and-simple-definition-of-microservices
https://www.safaribooksonline.com/library/view/building-microservices/9781491950340/ch01.html


7/30/2018 Building an Application: Strategies for Microservices | Swagger

https://swagger.io/resources/articles/building-an-application-with-microservices/ 3/6

Industry leaders have different schools of thought regarding monolith or
microservices first. Martin Fowler, a well-known author, software engineer,
and chief scientist at ThoughtWorks, advocates a monolith first approach.
He advises that it is better to start with a monolith and then move to
microservices later if needed. Stefan Tilkov, co-founder and principal
consultant at innoQ, advocates a microservices first approach on the
grounds that the components of a monolith will eventually become very
tightly coupled to each other. This makes it very difficult to split the monolith
into individual services later.

It should be noted that there are many approaches to application
development, it’s not just a binary choice- monolith or microservices first.
For example, Darby Frey, senior engineering lead, platform, Gamut,
explains in an article on Medium that his team decided against doing
monolith or microservices first. The team built two apps instead — not really
microservices but not a monolith either. The architecture the team built
includes an API gateway layer which allows them to have as many backend
services as they want.

There are many things to consider before choosing an architecture for your
application. If your development team doesn’t have any experience building
microservices, then a monolith may be a better option. If you want the
features of your app to be cutting-edge, then you would need to use the
best language, framework, and library for each feature. In this case,
microservices would be the better choice. This is not to say that you can’t
build a monolith with cutting-edge features. But a monolith tends to be
limited to only a few languages which means you may end up building
features with a language that isn’t the best suited for all the features of your
app.

Starting with a Monolith

http://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/articles/dont-start-monolith.html
https://medium.com/butter-cms/microservices-for-startups-an-interview-with-darby-frey-of-gamut-a7b2cc29ed5


7/30/2018 Building an Application: Strategies for Microservices | Swagger

https://swagger.io/resources/articles/building-an-application-with-microservices/ 4/6

What are some of the reasons you would want to start with a monolith?
Compared to microservices, it’s typically easier to deploy a monolith
because it’s usually one deployment on one server. And because the app is
treated as a single unit, it is much easier to monitor and perform end-to-end
testing. Compared to a monolithic application, monitoring and testing a
distributed app is more difficult because the services often have different
runtime environments. In addition, when a service needs to be tested, all of
the other services that service depends on would need to be launched as
well.

So, why would you not want to start with a monolith? One of the biggest
reasons you may not want to start with a monolith is that monoliths
eventually end up with numerous tightly coupled components. This makes
scaling and maintaining the code very difficult. Another reason is that
because of all the tightly coupled components, the code base often ends up
hard to understand which makes it difficult to onboard new developers.

Starting with Microservices

What are some of the reasons you would want to start with microservices?
Because microservices are autonomous, services can be developed,
deployed, tested, and scaled independently and quickly. Services can also
be developed using any language which means developers can experiment
with new technologies and add new features without interfering with other
parts of the app. And if there’s a problem with one service, the other
services will likely remain up and running. The risk that the application will
go down because of a problem with one or even multiple services is
significantly reduced.

API Evangelist Kin Lane has an interesting take on designing microservices
in that the OpenAPI Specification could be used to hammer out all the

https://smartbear.com/learn/automated-testing/end-to-end-testing/
https://apievangelist.com/2018/04/03/openapi-is-the-contract-for-your-microservice/
https://swagger.io/specification/


7/30/2018 Building an Application: Strategies for Microservices | Swagger

https://swagger.io/resources/articles/building-an-application-with-microservices/ 5/6

components of microservices before writing any code. Documentation,
mock representations of services, discovery mechanisms, and many other
microservices components could be generated using OpenAPI and
OpenAPI-related tools.

So, why would you not want to start with microservices? One of the reasons
you may not want to start with microservices is cross-cutting concerns as
they tend to pop up as microservices are built. Security and cross-cutting
concerns such as logging, caching, and authorization are difficult to tackle
when it comes to microservices and often require a lot of development.
Some companies will use an API Gateway so that cross-cutting concerns
and security are implemented in a centralized place. 

Another reason starting with microservices may not be the best option is if
your team does not have enough experience building microservices. A
microservices architecture is inherently complex, so it is risky to build
microservices if your team is not experienced in doing so.

Communication Between Microservices

Microservices are autonomous services, and applications with this type of
architecture often have dozens, sometimes hundreds of services. These
services need to be able to communicate with each other and with clients.
Microservices are often deployed using containers that use an inter-process
communication (IPC) mechanism to interact with each other. The most
common methods of communication for an IPC mechanism, especially if it
involves a request-response cycle, are RESTful. Which often means the
use of HTTP/JSON APIs.

Planning a strategy for communication is crucial as services must be able to
communicate efficiently and reliably. There are many challenges when it

https://swagger.io/solutions/getting-started-with-oas/
https://swaggerhub.com/blog/api-strategy/microservices-apis-and-swagger/


7/30/2018 Building an Application: Strategies for Microservices | Swagger

https://swagger.io/resources/articles/building-an-application-with-microservices/ 6/6

comes to communication between services such as latency, failures, and
routing. A recent article by Christian Posta, chief architect, cloud application
development, Red Hat, talks about how calling services and getting
services to talk to each other are among the hardest parts of developing
microservices.

Choose An Approach That Best Suits Your
App

Microservices are a popular approach for application development because
it allows developers to build apps that are fast, reliable and highly scalable.
But distributed applications tend to be incredibly complex. Choose
microservices only if the approach is best suited for your application. 

Thanks for reading! Looking for more API resources? Subscribe to the
Swagger newsletter. Receive a monthly email with our best API
articles, trainings, tutorials, and more. Subscribe

http://blog.christianposta.com/microservices/the-hardest-part-of-microservices-calling-your-services/
https://swagger.io/blog/subscribe/

